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LEITER TO THE EDITOR 

Self-organisation in the centre manifold of a dissipative system 

Ariel Fernhndez 
Max-Planck-Institut fur Biophysikalische Chemie, Am Fassberg, 3400 Gottingen, Federal 
Republic of Germany 

Received 19 October 1987 

Abstract. We consider a far-from-equilibrium dissipative system sustaining a centre mani- 
fold. The decomposition in correlated subsystems inducing organisation by means of a 
nucleation process is analysed. The average lifetime of the organised subsystems determines 
the width of the strip of probability about the centre manifold in macrostate space. 

Centre manifolds (CM) account for the stability and permanence of organisations far 
from equilibrium whenever the phase-space contraction which occurs beyond a dynami- 
cal instability is associated to a locally attractive and locally invariant region [ 1,2]. 
The CM coordinates are collective modes with long lifetimes due to long-range coopera- 
tive behaviour and the collective fluctuations in the order parameter rate equations 
depend on the characteristic kinetic parameters of the unfolding via scaling laws. This 
universal picture relates the probability width about the CM in the space of macrostates 
with the phase-space exploration of accessible microstates responsible for the competi- 
tion between the diffusive pressure about the CM and the slower deterministic drift 
towards the CM. The purpose of this letter is to obtain explicitly the time evolution 
of the probability distribution in a suitable coarse-grained phase space associated to 
every subsystem of the original dissipative open system [3,4]. The ensemble of 
subsystems is not a device of virtual existence but it is obtained from the fluctuation- 
correlation scaling which holds at the onset of a CM. On the other hand, the coarse 
graining of phase space is defined by the space of realisations of the random source 
for collective fluctuations determined by the nature of the unfolding (cf [ 5 ] ) .  Thus, 
throughout this work, those subsystems associated with macrostates lying in the strip 
about the CM will be regarded as information carriers or organised subsystems. Such 
subsystems can induce other subsystems to become organised by means of a nucleation 
process and, as information carriers lying in the CM, they have a finite lifetime which 
determines the diffusion pressure about the CM. Thus, the C M  portion of phase space 
can be regarded as a free-energy source defined by the average lifetime of a phase 
trajectory, the temperature of the system and the amount of information gained by 
creating and sustaining the CM. Therefore, the total flux of free energy through the 
system is provided by the destruction of information carriers and by the dissipation 
corresponding to the free energy which is not absorbed from the external source during 
the process of organisation. 

We shall focus on reductions of the macrostate space in which the order parameters 
are the CM coordinates subordinating the fast-relaxing degrees of freedom. Under 
such conditions, the intrinsic fluctuation correlations are determined by the Poincari 
normal form of the system once the subordinated modes have been separated from 
the order parameters [4]. For example, in a dissipative spin system governed by a 
Ginzburg-Landau potential and coupled to a thermal reservoir one can show that a 
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dynamic Kadanoff transformation is equivalent to a renormalisation determined by a 
centre manifold whose coordinates are the long-lifetime modes equal to the long- 
wavelength modes of the Kadanoff transformation [4,6]. 

The spirit of the decomposition of the system of volume V into subsystems of 
volume W is the same as in the derivation of a virtual scaling factor L-’ for the 
fluctuation strength with [2] 

W l  v = L-I. ( 1 )  

The correlation between subsystems needs to be calculated in order to obtain the 
nucleation rates determining the rate of attraction of phase trajectories to the region 
of organised microstates. We shall be concerned only with those microstates whose 
corresponding macrostates belong to the CM but not to the attractor contained in the 
CM. The competition between induced organisation and destruction of information 
carriers is trivial on the attractor itself since the phase trajectories have infinite lifetime 
in the portion of phase space associated to the attractor (note that the attractor has 
measure zero with respect to the measure induced on the CM by the measure on the 
space of macrostates.) 

We shall define an adequate multiplicity for macrostates not based on equally 
accessible microstates but based on cells of microstates in such a way that the coarse 
graining of the phase space is compatible with the ensemble of realisations of the 
random source term in the macroscopic rate equations. This random source denoted 
f corresponds to the intrinsic fluctuations in the system. 

The coarse graning is defined by means of an equivalence relation ‘m’ such that 
the equivalence classes are the cells. The relation is defined as follows. Given a 
microstate A, consider all the microstates connected to A by a phase trajectory and 
having the same macrostate. Denote one such microstate by B. Then we have 

A m B * A f I A + B = O - B E c ( A )  (2) 

( c ( A )  = equivalence class containing element A )  where the variation of the random 
source is associated with the displacement along the phase trajectory from A to B. 
Then, the coarse-grained space is the quotient space under the equivalence relation 

z=z/v ,  ( 3 )  
where I: denotes the phase space. 

We shall define a probability distribution p on 2 whose behaviour in time must be 
determined from the probability distribution P about the CM in macrostate space. In 
order to carry this out we must determine P and its associated decomposition in 
subsystems. We shall concentrate upon the case of a hard-mode instability in an open 
system beyond which a time periodicity emerges. Other unfoldings are treated in a 
similar fashion (see e.g. [2]). It is not our aim to evaluate P for a generic case but to 
determine the organisation in coarse-grained space once P is given for the onset of a 
CM. The following derivation serves as an illustration for a particular unfolding but, 
given P and the CM decomposition, it can be extended to any unfolding mutatis 
mutandis. 

The parameter L introduced in equation (1) is characteristic of the unfolding and 
will be used to display explicitly the scaling relations among the characteristic small 
parameters of the system. These are: 

(1) the average Gaussian width of probability density about the CM, denoted $; 

(2) the unfolding or bifurcation parameter, denoted 6 = q - qc; 
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(3) the scaling factor for the covariance matrix elements CO, for the internal 
fluctuations. 

We shall assume, without loss of generality, that the system is already in PoincarC 
normal form [ l ,  21. That is, the fast-relaxing enslaved modes, X,, and the enslaving 
modes, X , ,  have already been separated. In this ( X s ,  Xf)-representation, the explicit 
form of the covariance C is given by 

Cij(r, r', t, t ' )  = M ( r ,  t ) J ( r ' ,  t ' ) )  (4) 

where the angular brackets represent the thermal or statistical average, i.e. the average 
over a Gibbs ensemble of realisations of the random source terms, J; (which represent 
the rate fluctuations). Thus, we have 

Notice that we are only interested in the virtual volume that the fluctuations 'feel' and 
not in their macroscopic correlation length [2]. 

Here ukj represents the stoichiometric coefficient for the j th  species in the kth 
elementary step; b, are the matrix elements of the transformation which reduces the 
Jacobian matrix to a Jordan normal form, i.e., it reduces the system to Poincari normal 
form; V :  and v i  are the forward and reverse rate for the kth elementary reaction step 
respectively. 

In order to obtain a stochastic description of the highly cooperative long lifetime 
modes, X , ,  we must integrate the general Fokker-Planck (FP) equation for P with 
respect to the subordinated modes, along the CM,  allowing for a continuous flow of 
probability about the CM.  Then, the existence and structure of the collective modes 
involving the cooperative behaviour of a large number of particles is given by the 
smeared FP equation which is obtained from a CM reduction. In general, for S 
subordinating degrees of freedom and F subordinated variables, with S +  F = N, we 
have the following general equation: 

In order to integrate this equation, we shall make use of the factorisation of the 
probability functional which gives the statistical subordination of fast variables 

(7 )  P ( X , ,  Xf, t )  = ms, t)Q(XflXS) 
F 

The centre manifold hypersurface in macrostate space need not be calculated here. 
For details, the reader may consult [ 1,2,4]. The CM is given by the equations 

x, = 6(XS). (9) 
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The Gaussian widths about the CM will be derived explicitly together with the 
scaling relations needed to obtain the smeared FP equation. In general they are given 
by the following relations: 

cf 

g) = c &k( rI X::~X:T~ .  . . XL‘.) w) = ( 2 g ) p ’ .  (10) 
k-0 r , + t > +  + t , = k  

We shall now adopt the following scaling relations in order to explicitly display 
the relative size of the terms resulting from the integration process: 

c = L-1 xS.# = o ( L - ’ / ~ )  * = O( L-’/’)  b = O( L-L’2) (11)  

where @ is the width of the probability density averaged over the fast degrees of freedom. 
For our case of interest, we have 

Xs,l - (f) = -wx,,,+ a,XI,, + blXs.lXs,z+ 

Xs,2  - U), = wx,,] + a2xI,, + b2Xs,1Xs,2+ c ,xI , ,+o(~-~/~)  
Xf - ( f ) ,  = -AX,+ a,,X;,, + anX3,’+ O( L-’). 

(12) 

(13) 

(14) 

Following the canonical procedure for a Hopf instability, we introduce the cylindrical 
coordinates 

Xf = x, x,,~ = r COS e X,,* = r sin 8. (15)  

Thus, we get the smeared FP equation 

a,P = - r - ’ d , { [ (  q - qc)L-’/’r2 + u1 r 4 p }  - do[( w + b, r’)P] 

+ [ ( $ s , l , s , l ) 1 / 2  cos 6 + ( f E s , 2 , s , 2 ) 1 / 7  sin e]’af,P 
+[-fts,l,s,l cos e sin e+(Es. l ,s , l ts ,2 ,s ,2)1/2 cos*e 

+ft.s,2,s,2 sin e COS e]a,(r-’a,l;) 

+ r - 1  [ I c ~ , ~ , ~ , ~  1 - sin’ e -~ts,1,s,1ts,2,s,2~’~2 cos 6 sin e+ft,, , , , , ,  cos’ e]a,P 
+ r -2 [ - t s , l , s . l  sin e cos e + 2 ( ~ s , 1 , s , 1 ~ s , 2 , s , 2 ) 1 ~ *  sin’ 6 

- Es,2 ,s ,2  cos e sin 6]fa,P (16) 

where the tilde on top of the correlation matrix elements denotes restriction to the CM. 

This equation has been obtained making use of the first-order approximation 
N 

G =  N-I (26;,/A,)”2 
) = I  

where the A) are the damping constants for the Xf,) and the subscript f has been 
dropped from the correlation elements. 

Following a standard procedure, we shall get rid of the angular dependence by 
factorising P as follows: 

P ( r ,  6, Z) = $(r ,  t ) y ( e ( r ) .  (17)  - 
This gives, to order L-’”, the equation of continuity for which ensures the continuous 
flow of probability about the CM and also verifies the validity of relations (1 1) and (16): 

(18) 
1 

8, &r, 2 )  = -;d,i[(q - qc)L-1/2r2+ u r 4 ~ & + i ~ ~ s , l , s , l  + ~ , , ~ , , , ~ a ~ , i ?  
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The decomposition of the system in L interacting subsystems of volume W follows 
from equations ( l ) ,  ( 5 )  and (11). All the subsystems have associated the same coarse- 
grained phase space defined by equations (2) and (3). Thus, the average over an 
ensemble of realisations off  is equal to the average over the ensemble of subsystems. 
Thus, our aim is to determine the time evolution p defined over 2.  This distribution 
is made up of the following thermal averages: 

P = {PA}all  c ( A ) E %  P A  = ( X A )  (19)  

where x A  is the characteristic function for c(A): 

if the microstate of the subsystem belongs to c ( A )  
X A  = I‘ (20) 

L O  otherwise. 

We shall derive p making use of the information on P provided by the CM contraction 
in macrostate space. 

Thus pA is the probability that a subsystem is in cell c(A)  at a given time. Let A 
contained in 2 denote the set of cells whose macrostates realised the constraints given 
in (9) and do not belong to the limit cycle (attractor) emerging beyond the hard-mode 
instability. The subsystems of which A is made up are information carriers of finite 
lifetime. 

Thus a measure of the degree of organisation is given by the fraction of organised 
subsystems 

At this point it must be emphasised that p and P are distributions defined on 2 

The disorganised subsystems which do not lie on A are ergodic, thus, the amount 
and the macrostate space respectively. 

of information I = Z ( t )  gained by sustaining the CM is given by 

I = x L  ln(p(Z)/p(A))  = XL ln(m(cM)) (22) 

where f i  is the measure induced on the quotient space by the Lebesgue measure p on 
Z and m is the normalised measure in macrostate space 

The symbol 5, denotes integration restricted to the ball of radius M :  (1x1 S M } .  

information carrier has a finite lifetime given by the effective diffusion coefficient 
Thus, the set of organised subsystems acts as a source of free energy since each 

D = N-l((lf112)”2. (24) 

F = W1( Ilf(l*)”*xLT ln(m(cM)) + Fdis. 

Therefore, the total flux F of free energy through the system is given by 

( 2 5 )  

The first term represents the contribution from the destruction of information carriers. 
The second term corresponds to the free energy which is dissipated without having 
been successfully used up in organising subsystems. 
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After a certain induction period or transient, the probability density P is confined 
to a strip about the CM. Thus, to describe the long-time behaviour of p, we need to 
derive the time evolution of the set of information camers, i.e. 

PCM = {PE) C ( B ) ~ / Z .  (26) 

SAB( t )  = ( ( x A ( ~ ) x B ( P ) ) ~ ) B  (27) 

The time evolution of pCM depends on the cell correlations 

where a and P label subsystems in a generic sense. Thus, for an arbitrary c (  B )  E A, 
we have 

This result requires further explanation. The first term in square brackets is made 
up of terms each of which represents the probability per unit time that a subsystem 
in a cell c ( A )  which belongs to A induces a subsystem in any cell which does not 
belong to A to become organised, by evolving to c (B) .  This statement can be readily 
verified by noting that the probability that a subsystem is in a disorganised cell is (1 - x). 

Since we are interested in the distribution of subsystems in the CM, we must consider 
the normalised variables 

Y A  = P A / X *  

In this representation (26) becomes 

Y A =  C MABYB-YA 
c (  E )  E .2 

where 

Equation (30) is isomorphic to the equation representing the selection process in 
a collection of self-reproducing macromolecular information carriers [ 71. 

This work was financially supported by the Alexander von Humboldt Foundation. 

References 

Fernandez A 1987 J.  Phys. A: Math. Gen. 20 L763 
Femindez A 1986 Phys. Lett. 119A 168 
Courbage M 1983 Physica A 122 459 
Fernandez A and Rabitz H 1981 Phys. Rev. A 35 5203 
Jaynes E T 1978 n e  Maximum Entropy Formalism ed R D Levine and M Tribus (Cambridge, MA: 

Ma S-K and Mazenko G F 1975 Phys. Rev. B 11 4077 
Eigen M and Schuster P 1979 n e  Hypercycle (Berlin: Springer) 

MIT Press) p 91 


